Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 350: 141023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141674

RESUMO

Energetics used in military exercises can potentially contaminate ground and surface waters. This study was conducted to evaluate the movement of Composition B, a formulation that includes TNT (2,4,6-trinitrotoluene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), in runoff. Mechanisms of transport we examined include movement of energetics dissolved in runoff, as particles and adsorbed to suspended sediment, and in infiltration. Rainfall simulations were conducted under controlled conditions with two rainfall rates (approximately 30 and 50 mm h-1), two soils with different infiltration capacities, and four energetic particle sizes (4.75-9.51 mm, 2.83-4.75 mm, 2-2.83 mm, and <2 mm). Particles remaining on the soil surface after rainfall were measured as well as energetics dissolved in runoff, in suspended sediment, and in infiltration. Greater concentrations of TNT than RDX and HMX were found dissolved in runoff due to its higher solubility and dissolution rates. We also found that particle transport in runoff increased with decrease in particle size. Smaller particle sizes also led to greater transport dissolved in solution. Relationships were found relating runoff and sediment yield to the transport of RDX and TNT. The results of this study allow improved prediction of Composition B transport in runoff and therefore its contamination potential.


Assuntos
Substâncias Explosivas , Trinitrotolueno , Substâncias Explosivas/química , Azocinas/química , Trinitrotolueno/análise , Triazinas/química , Solo
2.
Sci Total Environ ; 866: 161434, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36623648

RESUMO

Insensitive munition constituents derived from residues of low order detonations and deposited on military training grounds present environmental risks. A series of rainfall simulation experiments on small soil plots examined the effect of precipitation, soil properties, and particle size on transport of IMX-104 munition components: NTO (3-nitro-1,2,4-triazol-5-one), DNAN (2,4-dinitroanisole), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7- tertranitro-1,3,5,7-tetrazocine). The primary pathways for rainfall driven transport were subsurface infiltration, off-site transport in solution, and transport in solid form including re-adsorption onto soil particles. The transport was solubility dependent with NTO moving mostly in solution, which was dominated by either runoff or infiltration depending on soil. DNAN, RDX, and HMX, were transported primarily in particulate form. The fine energetic fraction (<2 mm) showed the highest mobility, while the coarsest fraction (>4.75 mm) remained in-situ after rainfall. A simple linear model relating energetics transport with sediment yield and energetics particle size and was proposed. These findings provide the first comprehensive mass balance of munition constituents as affected by overland flow under rainfall. They improve our understanding of environmental fate of munitions, can further be used for predictive modelling, developing mitigation strategies, and regulatory compliance.

3.
Chemosphere ; 310: 136866, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270523

RESUMO

The deposition of explosive contaminants in particulate form onto the soil surface during low-order detonations can lead to ground and surface water contamination. The vertical fate and transport of insensitive munitions formulation IMX-104 through soil has been thoroughly studied, however the lateral transport of explosive particles on the surface is less known. The objective of this research was to understand the impact of overland flow on the transport of IMX-104 constituent compounds 3-nitro-1,2,4-triazol-5-one (NTO), 2,4-dinitroanisole (DNAN), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The effect of overland flow was examined in a rill flume using several flow rates (165-, 265-, and 300-mL min-1) and IMX-104 particle sizes (4.75-9.51 mm, 2.83-4.75 mm, 2-2.83 mm, and <2 mm). We found that the smaller particles were transported more in solution and with the sediment compared to the larger particles, which had a higher percent mass remaining on the surface. As flow rate increased, there was an increase in the percent mass found in solution and sediment and a decrease in the percent mass remaining on the surface. NTO fate was dominated by transport in solution, while DNAN, RDX and HMX were predominantly transported with the sediment. This research provides evidence of the role of overland flow in the fate of energetic compounds.


Assuntos
Substâncias Explosivas , Nitrocompostos , Anisóis , Triazinas , Solo
4.
J Hazard Mater ; 413: 125459, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930971

RESUMO

2,4-Dinitroanisole (DNAN) is an insensitive munitions compound expected to replace 2,4,6-trinitrotoluene (TNT). The product of DNAN's reduction in the environment is 2,4-diaminoanisole (DAAN), a toxic and carcinogenic aromatic amine. DAAN is known to become irreversibly incorporated into soil natural organic matter (NOM) after DNAN's reduction. Herein, we investigate the reactions between DAAN and NOM under anoxic conditions, using 1,4-benzoquinone (BQ) and methoxybenzoquinone (MBQ) as model humic moieties of NOM. A new method stopped the fast reactions between DAAN and quinones, capturing the fleeting intermediates. We observed that DAAN incorporation into NOM (represented by BQ and MBQ models) is quinone-dependent and occurs via Michael addition, imine (Schiff-base) formation, and azo bond formation. After dimers are formed, incorporation reactions continue, resulting in trimers and tetramers. After 20 days, 56.4% of dissolved organic carbon from a mixture of DAAN (1 mM) and MBQ (3 mM) had precipitated, indicating an extensive polymerization, with DAAN becoming incorporated into high-molecular-weight humic-like compounds. The present work suggests a new approach for DNAN environmental remediation, in which DNAN anaerobic transformation can be coupled to the formation of non-extractable bound DAAN residues in soil organic matter. This process does not require aerobic conditions nor a specific catalyst.

5.
Environ Pollut ; 268(Pt B): 115862, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120159

RESUMO

2,4-Dinitroanisole (DNAN) is a component of insensitive munitions (IM), which are replacing traditional explosives due to their improved safety. Incomplete IM combustion releases DNAN onto the soil, where it can leach into the subsurface with rainwater, encounter anoxic conditions, and undergo (a)biotic reduction to aromatic amines 2-methoxy-5-nitroaniline (MENA), 4-methoxy-3-nitroaniline (iMENA, isomer of MENA), and 2,4-diaminoanisole (DAAN). We report here studies of nucleophilic addition mechanisms that may account for the sequestration of aromatic amine daughter products of DNAN into soil organic matter (humus), effectively removing these toxic compounds from the aqueous environment. Because quinones are important moieties in humus, we incubated MENA, iMENA, DAAN, and related analogs with model compounds 1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone under anoxic conditions. Mass spectrometry and ultra-high performance liquid chromatography revealed that the aromatic amines had covalently bonded to either carbonyl carbons or ring carbons ß to carbonyl carbons of the quinones, producing a mixture of imines and Michael adducts, respectively. These products formed rapidly and accumulated in the one-to four-day incubations. Nucleophilic addition reactions, which do not require catalysis or oxic conditions, are proposed as a mechanism resulting in the binding of DNAN to soil observed in previous studies. To remediate sites contaminated with DNAN or other nitroaromatics, reducing conditions and humus amendments may promote their immobilization into the soil matrix.


Assuntos
Substâncias Explosivas , Solo , Aminas , Anisóis , Núcleo Familiar , Quinonas
6.
Chemosphere ; 222: 789-796, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30739063

RESUMO

Explosives, pesticides, and pharmaceuticals contain toxic nitroaromatic compounds that may form even more toxic azo compounds if they encounter reducing conditions in the environment. We investigated the mechanism by which 4,4'-dimethoxyazobenzene forms in anaerobic sludge incubations of 4-nitroanisole, an analog for the insensitive munitions compound 2,4-dinitroanisole (DNAN). Because studies have reported the mechanism to involve the coupling of reduced nitroaromatic intermediates, specifically aromatic amines and nitrosoaromatics, by nucleophilic processes, we abiotically paired 10 mM 4-aminoanisole with 2 mM 4-nitrosoanisole in nitrogen-flushed microcosms. However, only 7 µM of 4,4'-dimethoxyazobenzene had formed after 24 h. We identified the major product to be 4-methoxy-4'-nitrosodiphenylamine. Repeating this experiment in phosphate buffer at pH 5.1, 7.1, and 8.6 demonstrated that the formation of this unexpected product is acid catalyzed. We found that 4-methoxy-4'-nitrosodiphenylamine is more toxic than 4,4'-dimethoxyazobenzene to the bioluminescent bacterium Aliivibrio fischeri, with IC50 values of 0.1 µM and 0.5 µM, respectively. Both products are several orders of magnitude more toxic than reduced 4-nitroanisole intermediates 4-aminoanisole and 4-nitrosoanisole, as well as DNAN and its aromatic amine metabolites. Six-fold more 4,4'-dimethoxyazobenzene formed when we incubated 4-nitrosoanisole with ascorbic acid, a reducing agent, than when we incubated 4-nitrosoanisole with 4-aminoanisole in the absence of ascorbic acid. We therefore suspect that 4-hydroxylaminoanisole, the first reduction product of 4-nitrosoanisole, is a better nucleophile than 4-aminoanisole and couples more readily with 4-nitrosoanisole. Slightly basic and reducing conditions can prevent the formation and persistence of toxic coupling products on sites contaminated with nitroaromatics, i.e. DNAN-contaminated firing ranges.


Assuntos
Anisóis/química , Aliivibrio fischeri/efeitos dos fármacos , Aminas/química , Anisóis/toxicidade , Compostos Azo/química , Substâncias Explosivas/química , Substâncias Explosivas/toxicidade , Oxirredução , Esgotos/química
7.
Chemosphere ; 195: 372-380, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29274576

RESUMO

Nitroaromatic compounds are widely used in agricultural pesticides, pharmaceuticals, military explosives, and other applications. They enter the environment via manufacturing and municipal wastewater discharges and releases from agricultural and military operations. Because of their ubiquity and toxicity, they are considered an important class of environmental contaminants. Nitroaromatics are known to undergo reductive transformation to aromatic amines, and under aerobic conditions they are susceptible to coupling reactions which may lead to their irreversible incorporation into soil organic matter. However, there is also evidence of coupling reactions in the absence of oxygen between reduced intermediates of the insensitive munitions compound 2,4-dinitroanisole, leading to the formation of azo dimers. The formation of such products is a concern since they may be more toxic than the original nitroaromatic compounds. The objective of this research is to provide evidence of the anaerobic formation of azo coupling products. 4-Nitroanisole was used as a model compound and was spiked into incubations containing anaerobic granular sludge with H2 as the electron donor. Using liquid chromatography, UV-Vis spectroscopy, and mass spectrometry, the formation of the azo dimer 4,4'-dimethoxyazobenzene was confirmed. However, due to the instability of the azo bond under the reducing conditions of our incubations, the azo dimer did not accumulate. Consequently, 4-aminoanisole was the major product formed in our experiment. Other minor suspected coupling products were also detected in our incubations. The results provide clear evidence for the temporal formation of at least one azo dimer in the anaerobic reduction of a model nitroaromatic compound.


Assuntos
Anisóis/química , Poluentes Ambientais/química , Aminas/química , Anaerobiose , Compostos Azo/química , Cromatografia Líquida , Substâncias Explosivas/química , Espectrometria de Massas , Esgotos
8.
Environ Sci Technol ; 51(22): 13327-13334, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29072907

RESUMO

2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14C-DNAN into the humin fraction. 14C-DNAN incorporation to the humin fraction was strongly correlated (R2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.


Assuntos
Anisóis , Solo , Radioisótopos de Carbono , Poluentes do Solo
9.
Biomaterials ; 31(31): 8072-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20688389

RESUMO

Strategies to control the release rate of bioactive signals from tissue engineering scaffolds are essential for tissue regeneration and tissue engineering applications. Here we report on a strategy to achieve temporal control over nanoparticle release from biomaterials using cell-secreted proteases. This cell-triggered release approach utilizes peptides that are degraded by matrix metalloproteinases (MMPs) at different rates to immobilize nanoparticles directly to the biomaterial surface. Thus, the peptide-immobilized nanoparticles are released with temporal control through the action of cell-released MMPs. We found that release rates of peptide-immobilized nanoparticles were a function of peptide sensitivity to proteases, the number of tethers between the nanoparticle and the surface and the concentration of proteases used to induce release. Cellular internalization of the peptide-immobilized nanoparticles was also a function of the peptide sensitivity to proteases, the number of tethers between the nanoparticle and the surface and MMP expression profile of the cells. Similar trends were observed for peptide-immobilized nanoparticles inside micro-porous hydrogels, indicating protease sensitive tethers are effective in controlling release rate and internalization of nanoparticles. Such a temporal delivery strategy of nanoparticles loaded with therapeutic payloads (e.g. protein, DNA, siRNA) can be an ideal means to guide tissue formation.


Assuntos
Preparações de Ação Retardada/farmacologia , Células-Tronco Mesenquimais/enzimologia , Nanopartículas/química , Peptídeo Hidrolases/metabolismo , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Microscopia de Fluorescência , Tamanho da Partícula , Peptídeos/metabolismo , Polietilenoglicóis/farmacologia , Polimetil Metacrilato/farmacologia , Porosidade/efeitos dos fármacos , Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...